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The last decade has witnessed a quiet revolution in the theory and applica- 
tion of orthogonal polynomials. Of course, numerical analysts and practition- 
ers of scientific computing have been always aware of the role of orthogonal 
polynomials in quadrature methods, spectral algorithms, numerical algebra, ap- 
proximation theory, etc. Recent work, however, went a long way not just to 
emphasize the centrality of orthogonal polynomials to computation but to high- 
light a wide range of further applications-from quantum groups to dynamical 
systems, from coding theory to spectral properties of the Schrodinger equation, 
from group representation to signal processing... [7]. 

An important part of the unfolding orthogonal scene are 'exotic' concepts 
of orthogonality, e.g., convolution orthogonality [1] and orthogonality with re- 
spect to a Sobolev inner product [6]. A place of pride on this list belongs to 
biorthogonal functions, the subject of the book under review. And who can be 
a more natural expositor of this subject area than Professor Brezinski, one of 
the leading workers on both theory and applications of biorthogonality?! 

There are several ways of introducing biorthogonal functions and the book 
follows the original framework of Davis [2]. Let E be an infinite-dimensional 
vector space and let x0, X1, X2, ... E E be linearly independent. Moreover, 
suppose that Lo, LI, L2, . .. are linear functionals acting on E (i.e., elements 
of the dual space E*) and that 

- Lo (xo) Li (xo) L. (x0) 1 

det Lo(X) L(x) L.n(xI) 0 

L Lo (xn ) LI (xn ) ..Ln (xn) J 

for all n = 0, 1, 2 . Then there exist unique linear combinations 
n n 

L*=Zan,nLn, , x ,=Zbn jx, n=0, 1,2,.... 
1=0 1=0 

such that L*(4) = 3m, n . The set {Ln, x*} =O is called a biorthogonalfamily. 
Other definitions of biorthogonality require somewhat stricter frameworks. 

Nevertheless, they are highly illuminating and the loss of generality does not 
interfere with realistic applications. Thus, if E is a Hilbert space, then by 
the Riesz equivalence theorem biorthogonality can be expressed in terms of 
inner products. This is somewhat more 'symmetric', since the two sequences 
required for biorthogonality belong to the same space. Furthermore, if the 
inner product is selfadjoint, then the Daniel theory of integration implies that 
biorthogonality can be expressed in terms of Stieltjes-Lebesgue measures (or, 
for those at home with generalized functions, weight functions). The latter 
framework is particularly useful and transparent in the case of biorthogonal 
polynomials-more about it in the sequel. 

The first part of the book is devoted to a formal exposition of biorthogonal 
functions and their theoretical features. It brings together a great deal of results, 
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many quite recent, that have been scattered throughout the scientific literature. 
They are bound together with a generous measure of mathematical mortar, the 
cracks and gaps being filled by original and unpublished research. The formal 
functional-analytic approach does not make for an easy reading, but the extra 
effort required to master the contents and to follow its technical minutiae is 
worthwhile. It is, however, the sentiment of this reviewer that this part is need- 
lessly formal and uncompromising in its attitude to the reader. Very seldom are 
we told the purpose of this or that construct at the point of embarkation. In- 
stead, the exposition, as elsewhere in the book, is a Bourbaquiste progression of 
definition -> proposition -> theorem. The material of the book is intrinisically 
difficult and calls for mathematical maturity and ability to cope with subtle 
technicalities on the reader's part-why make it even more straightlaced and 
formal? 

The surfeit of formalism occasionally hides gaps and ambiguities. Thus 
(pages 25-26, verbatim): 
"3.5 The method of moments 

This method, studied by Vorobyev [186] in a Hilbert space, is a particular 
case of Galerkin's method. We shall now extend it to an arbitrary vector space 
E and its dual E*. 

The method of moments consists in constructing a linear operator A, on 
En- 1 such that 

xl = Anxo 

X2= AnX1 

Xn- AnXn-2 

In-l(Xn) = AnXn-l 

or 

k=Ankxo k = O, , n - I Xk = Anx 
In- I(Xn) =AnnXo." 

We are told neither what is En_- (as distinct from E) nor whether the defini- 
tion should be valid for just one xo E EEn_ - or for all xo E EEn_ - . The interpola- 
tion operator In-I has been already defined in ?3.2 in a different formalism- 
the reader should be able ultimately to work out its relevance in the present 
setting, but only with a wholly unnecessary extra effort. Most importantly, what 
is the purpose of the method of moments? Which problems is it supposed to 
solve? What are the advantages in studying it in arbitrary vector spaces? 

To be fair, formalism has its rewards and, in Professor Brezinski's hands, it 
frequently becomes a powerful tool. An example, dear to this reviewer's heart, 
are Christoffel-Darboux identities for biorthogonal functions. Their derivation 
in [4] for the special case of biorthogonal polynomials required much effort 
(and, to be frank, much tedium), whereas the book presents a far-reaching 
generalization, based on its formalism-and does it, comprehensively, in a short 
page. Bravo! 
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In other instances, the quest for generality obscures important features of 
special cases. Thus, biorthogonal polynomials have been defined in [3] as fol- 
lows: a nonzero nth-degree polynomial Pn('; [I , E12, ... , P) is biorthogonal 
with respect to the parametrized Borel measure dqp(x, ut) if 

{00 

A, n(X; 91 , 92, *-., dn)d(x, pl) = O,0=1, 2,., n. 
-00 

This definition can be made to fit into the straightjacket of this book's formalism 
by defining the functionals 

L*f := J (x)d(p (x, . k+l) 5 k = O, 1, .. .. 
-00 

but there is a price to pay. Biorthogonal polynomials from [3] depend on their 
parameters ,ui, ..., ,un in a continuous (indeed, differentiable) manner. This 
is absolutely crucial to their application to trace loci of zeros of polynomial 
transformations [5]. 

The remainder of the book presents an exposition of a considerable number 
of applications of biorthogonality. The list is impressive: the Lanczos method, 
biconjugate gradients, rational approximation theory, acceleration of conver- 
gence, design of multistep methods for ordinary differential equations and least 
squares calculations. Claude Brezinski speaks with great authority on all these 
and has been a driving force in the implementation of biorthogonal techniques. 
Thus, I approached this part of the book with great anticipation but, alas, found 
the paucity of explanation and motivation a real stumbling block. Thus, on page 
33 we are treated to the only explanation of what the Lanczos method and bi- 
conjugate gradients are all about: 

"In a Hilbert space it is well known that the method of moments 
gives rise to Lanczos' method and then to the conjugate and bi- 
conjugate gradient methods, see [17, pp. 79-91, 186-189]." 

Well, an educated numerical analyst should have heard of the Lanczos method 
(and is unlikely to confuse it with the Lanczos T method), although a brief 
reminder would have been welcome. But how many know of biconjugate gra- 
dients? Readers with plenty of commitment, motivation and spare time (to 
say nothing of a well-equipped library) may always consult the references-but 
what of the remaining 99%? 

This is a book evidently written in a hurry. It is based on deep knowledge 
and scholarship and will be indispensable as a source for the small band of 
workers in the subject. I am, however, sceptical of its potential to popularize 
the important concept of biorthogonality in the broader numerical community. 
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In the applied sciences one often faces the task of determining a numerical 
value for the limit of a slowly convergent sequence. In many situations the 
sequence is divergent, yet there is a commanding physical reason to attach a 
meaning-in the sense of limit-to the sequence. Techniques for summing 
slowly convergent, or divergent, sequences go by the generic name of summation 
methods. The idea is to transform the given sequence Sn into a sequence Sn 
by some kind of formula, Sn = Fn{So, Si ..., Sk(n}, n = 0, 1, 2,..., so 

that Sn converges to the same limit, but more rapidly. 
In such an undertaking the numerical analyst has to address several issues, 

partly philosophical in nature: 
1) For a given sequence or class of sequences, which is the best technique to 

use? 
2) What assurance does one have that the approximate limit will be close- 

arbitrarily close-to the true limit? 
3) If the sequence is divergent, how can one know that the so-called limit 

calculated will reflect what the physical situation dictates? 
We can easily dispose of the last dilemma. There can be no general assurance 

that the limit calculated is the "correct" one. In his book [3] on infinite series, 
Knopp gives an example to illustrate that several heuristically plausible "limits" 
can be assigned to a divergent sequence. Although textbook examples may be so 
concocted, reality seems gentler to the numerical analyst: it is a rule of thumb 
that in real-life situations one either gets no limit at all or the correct limit. 

At a conference in January 1992 in Tenerife, E. J. Weniger presented some 
remarkable examples. The sequences in question were the partial sums, strongly 
divergent, of perturbation expansions for the ground state energies of the quar- 
tic, sextic, and octic anharmonic oscillators. The sequences posed challenging 
test problems for available summation methods, since their terms diverged, re- 
spectively, like n!/n 1/2, (2n)!/n 1/2, (3n)!/n 1/2. A favorite method-the Levin 
transformation-could not sum any of these sequences, and the failure was not 
an artifact of numerical instability or round-off error-a common pitfall of sum- 
mation methods. Weniger performed the computations in Maple in 1000-digit 
precision; the failure of the Levin method was genuine. Another transformation 
did sum the sequences. It is interesting that in all the cases Weniger studied, 
the summation methods chosen either did not produce a convergent sequence 


